Relationship Searches on Family Databases:
Theory and Practice

PART 11. THE PRACTICE

We now put to practice the theories of
part I, using dBASEII (a2 trademark of Ashton-
Tate Corp.). W¥e must implement the theories
efficiently. One implementation, soon to be
shown, originally took 18 minutes to znswer a

query. After modifying it Tor better
efficiency, the same guery was reduced to 2
minutes.

¥e call our database FANILY. The relevant

fields, for the simpler gueries, are all 4-
digit numeric codes: ©PERSON, FATHER, MOTHER.
Person Father Mother
127 18 1037
128 347 92
128 2 212

However, our database mav have any additional

fields we desire: Name, Birthdate,
Birthplace, etc.
Is X related to Y?
We used four steps to answer this
guestion:
12 Create 2 sets: one with MNartha
Johnston in it and one with Solomon

Butson in it.

2 Find the records of the parents of

each person, and add them to that
person's set,
b £ Check to see if anyone in Martha

Johnston's ancestral set is also in
Solomon Butson's ancestral set. 1If
so, quit: the answer is "Yes, they
are related." X

4. Repeat steps 2 and 3 until there are
no more parents to be found. If that
happens, then they have no known
blood relationship.

The functions we need to carry out these
sieps are:

Answer Query.
Step 1.
Make an index.
Determine who X and Y are.
Make Ancestral Sets for X and Y.
Step 2.
Generate parents into Ancestral Sets.
Steps 3 and 4.
Check for Match in Ancestral Sets.
Print Results.

That is, we will need computer routines,
or modules, to do each of the six functions.
Then, we can put those routines together +to

answer the query.

JUL 84 — GENEALOGICAL COMPUTING - 10

The main module, the one that puts the
others together, is called RELATE. We code it

in dBASEII as follows. [NOTE: Lower case
words are variables. Upper case words are
dBASEII reserved words. To save space, some

long commands bave been broken into multiple
lines. These are identified by the one-space
indention of the second line.

EXEX R AR KK IR AR R XY X R RN TN F R F K E % ko ok okok ok 3k o ok ik % ko

* RELATE.CMD

* "Is X related to Y?"

W oF K kR ko ok ok sk R R ok ok o ok ok R 3 ok 3 o S O Mk K 3k 3 ok ok K K K
CLEAR

SET TALK off

SET ECHO off

SET FOEMAT TO screen

STORE "Is X related to Y?" TO mode
=

DO makeindx
DO getxy
DO makesets
DO WHILE .NOT. related .AND.
(xgenend xprevend .OR. ygenend
STORE gens + 1 TO gens

yprevend)

IF xgenend xprevend
STORE "X" TO setname
DO generate

ENDIF

IF ygenend yprevend
STORE "Y" TO setnane
DO generate

ENDIF

DO checkit
ENDDQ
E 3

DO printans
RETURN

The six routines, or
preceded by asterisks:

modules, are

MAKEINDX
GETXY
MAKESETS
GENERATE
CHECKIT
PRINTANS

GENERATE and CHECKIT are in a
loop. This 1loop repeats the two
(recall step 4 of our theoretical procedure)
until either a relationship is found or we
run out of ancestors for both X and Y.

DO/ENDDO
functions

GERERATE runs only if no relation has yet
been found and if there is the possibility of
finding any more ancestors. That is; if X has
run out of ancestors but Y has not, then
there is no need to go looking for more
ancestors of X. The variables XGENEND,
XPREVEND, and SETNAME will be explained in
detail below.

We will examine each of the six
in detail in the following sections.

modules

Module MAKEINDX

MAKEINDX creates a PERSON code index for
our FAMILY database. ¥We will use this index,
called XPERSON, in other modules to make the
searching efficient,

The following is the advanced version of

MAKEINDX. The only commands needed to make
the index are:

USE family

INDEX ON person TO xperson
The rest of the code in the advanced module
gives the inquirer the option of bypassing
the somewhat time consuming creation of an
index, if he or she knows that a correct, up-

to-date index already exists.

R T T P P T eIt

* MAKEINDX.CMD

it I I I I T T I T T T T T T T T T T I T T ™ ™
IF FILE('"xperson.ndx")

STORE f TO makeindx

ERASE

@ 1,11 SAY "RELATIONSHIP SEARCH"
@ 3 T SARNeas o i
@ 5, 1 SAY "This search requires that an it
@ 6, 1 SAY "index be made for the FAMILY o
@ 7, 1 SAY "database. There is an index on "
@ 8, 1 SAY "the diskette. Thus you have the"
@ 9, 1 SAY "option "of using that index u
@ 10, 1 SAY "(which may not be up-to-date) "
@ 11, 1 SAY "or creating a new index (which "
@ 12, 1 SAY "is time-consuming). v
@ 14, 1 SAY "Enter a 'y' to create an index."

@ 14,33 GET makeindx
@20, 1 8AY "em—emmemamnangamo oo ooy "

READ

IF makeindx

USE family
INDEX ON person TO xperson

ENDIF
ELSE

USE family

INDEX ON person TO xperson
ENDIF
RELEASE makeindx
RETURN

Module GETXY

GETXY asks the inquirer who he or she
wants to inquire about and then makes this
available to the other modules as X and Y.

The simplest version, shown below, merely
asks you to enter X and then enter Y.
I have Iimplemented a more advanced

version that allows you to enter all or part
of the first and/or last name. It then scans
the database and gives you the data about
everyone who met those requirements. You then
tell it which one of the people it found is
the one you want. Optionally, if you simply
enter a number for person X, it tells you who
that person is. And it let's you confirm that

it is the person you want before it does the
relationship search.

The advanced version is too complex for
this article. Thus, the following is the

simple version:

Bt oy
* GETXY.CMD

B R e e L S
STORE 0000 TO x

STORE 0000 TO y

ERASE

@ 3, 1 SAY "Enter the numbers or names of "
@ 4, 1 SAY "the persons. L
@ 5, 1 SAY "x»

@ 55 3. 6ET x

@ 6, 1 SAY "Y»

@ 6, 3GET y

READ

RETURN

Module MAKESETS

MAKESETS creates the Ancestral Sets for X
and Y. It initializes the sets by copying in
the data (PERSON, FATHER, and MOTHER codes)
about X and Y.

This is an important module for improviag
the efficiency of the overall process. Do not
use the dBASEII COPY for setting the initial
values in X and Y. COPY is not efficient for
that. Use APPEND and REPLACE instead.

To gain even more efficiency, we 1limit,
Ancestral Sets to only those fields
to answer the query. If the person,

and mother codes are the only fields
why make

the
needed
father,
needed to determine a relationship,

the computer use the entire FAMILY database
record, with names, dates, and places? So, we
set wup model databases, called RELATE1X and

Then we
create

RELATE1Y, for the Ancestral Sets.
COPY the structures of the models to
our X and Y Ancestral Sets.

e s
* MAKESETS.CMD

EE e s T T s
STORE 0000 TO gens

STORE 0000 TO xprevend

STORE 0001 TO xgenend

STORE 0000 TO yprevend

STORE 0001 TO ygenend

STORE f TO related
R T T T

USE family INDEX xperson
x

STORE STR(x,4) TO srcharg
FIND &srcharg

SELECT SECONDARY

USE relatelx

COPY STRUCTURE TO x

USE x

APPEND BLANK

REPLACE person WITH p.person
REPLACE father WITH p.father
REPLACE mother WITH p.mother
USE

SELECT PRIMARY

x

STORE STR(y,4) TO srcharg
FIND &srcharg

SELECT SECONDARY

USE relately

COPY STRUCTURE TQ y

USE y

APPEND BLANK

REPLACE person WITH p.person
REPLACE father WITH p.father
REPLACE mother WITH p.mother
USE

SELECT PRIMARY

LR s TS LTI
RELEASE recnum, srcharg
RETURN

Module GENERATE

GENERATE is the first module to be in the
DO/ENDDO loop. It is repeated many times. So,
we must look at it closely. Efficiency here
will have a great effect on the efficiency of

the overall query.

JUL 84 - GENFALDGCICAL COMPUTING — 11

GENERATE finds the father's and mother's
records, if there are any. It then adds these
records to the Ancestral Sets. GENERATE also
conirols a record counter, which is very
important. Let's take a closer look at the
Ancestral Sets and see why this is important.

The Ancestral
record for X,

Bet. _for X will ‘have g
followed by a record for his or
her father, followed by a record for X's
mother, etc. The Ancestral Set for X will
look 1like 1this, assuming records for all
relevant ancestors are actually in our FAMILY
database. Recall that each record has three
fields: PERSON, FATHER, and MOTHER codes.

Description
Record for X
Record of Father
Record of Mother of
Record of Father of
Record of Mother of
Record of Father of
Record of Mother of

of

1Ok WO N —
W W R N et

Of course, not all ancestors for any
person will be in our database. There will be
some cases like this:

Description

for X
Record of Mother
of Father
of Father
of Mother

O ok
of 2
of "3
of 3

How do we keep track of where we are at
any time? How do we know when we have run out
of ancestors to add to an Ancestral Set? One
way 1is to keep two record counters for each
Ancestral Set. We have already seen these
counters 1in the main wmodule, RELATE.
first counter, XPREVEND for Set X,
track of the 1last record number of the
previous generation. The other counter,
XGENERD, keeps track of the absolute highest
record number on the Ancestral Set.

keeps

For example,
Ancestral Set,

suppose we have the first
with 7 records, shown above.
We are ready to generate the next generation
of ancestors of X. Module RELATE checks to
see that we actually added some ancestors to
the Set for the previous generation. It sees

that XPREVEND was 3 (X, X's father and X's
mother) and that XGENEND is now 7. Thus, we
know that we did add some records for the
last generation. So, we can now look for the
parents of these latest added ancestors. (If
we had not found any ancestors in our
previous generation, both counters would be
the same, 7.) GENERATE now takes over and
does all the work for the next generation,

including changing XPREVEND and,
ancestors are found, XGENEND.

if any more

GENERATE also makes use of dBASEII
symboliec wvariables. We could have had a
separate GENERATE module for X and one for Y.
They would be the same, except for the
references to the variables, counters, and
Ancestral Sets. The use of the symbolic
variable &SETNAME allows us to have just one
GENERATE module. RELATE1 passes either an X
or a Y into GENERATE via the SETNAME field.
GENERATE does the rest.

JUL 84 - GENEALOGICAL COMPUTING - 12

The'

Wt?******”**t*******ﬁ'****11?*1****!n*'*?**?*

* GENERATE. CMD

Sk ok ok ok ok Kok ok ok o o o o ok oK ok ok o oK R R R SR R S ok

TORE "ksetiname" + "genend" TO genfld
STORE "&setname" + "prevend" TO prevfld
STORE &prevfld TO start
STORE &genfld TO finish
STORE &Lpenfld TO &prevfld

USE &setname
SELECT secondary
USE family INDEX Xxperson
SELECT primary
DO WHILE start finish
STORE start + 1 TO start
Ak ko KK
GOTO start
IF father 4]
STORE STR(father,4) TO srcharg
SELECT secondary
FIND ksrcharg
IF # 0
SELECT primary
APPEND BLANK
REPLACE person
REPLACE father
REPLACE mother

WITH s.person
WITH s.father
WITHE s.mother

STORE &genfld + 1 TO Zgenfld
ELSE
SELECT primary
ENDIF
ENDIF

R OK KR K KRR KRR
GOTQ start
IF mother]
STORE STR(mother,4) TO srcharg
SELECT secondary
FIND &srcharg
IF = 0
SELECT primary
APPEND BLANK
REPLACE person WITH s,.person
REPLACE father WITH s.father
REPLACE mother WITH s.mother

STORE &genfld + 1 TO kgenfld
ELSE
SELECT primary
ENDIF
ENDIF
ENDDO
SELECT secondary
USE
SELECT primary
USE
RELEASE start, finish, recnum, srcharg
RELEASE genfld, prevfld
RETURN
Module CHECKIT
CHECKIT is also in the DO/ENDDO loop and
is thus repeated several times to answer the
gquery. CHECKIT does a relational JOIN of
Ancestral Sets X and Y, creating a new set Z,

if there are any matches.
only if - anyone is both an ancestor of X and
an ancesior of Y, then that person will be
included in Set 32, the -5et of common
ancestors of X and Y. To find out if there is
a2 relationship, we simply look at Set Z and
see if there are any records in it. If there
are, then we have found a relationship
between X and Y. So, we store the value t
(for true) in the field called RELATED.
Otherwise, we leave RELATED as it was.

That is, if - and

el s R T e T S T Ty
* CHECKIT.CMD
xtt**##:lx**mtm¥*****t1:*#**t#**y;******xn*t;q*‘
USE x

SELECT secondary

USE ¥y

SELECT primary
IF FILE(z)
DELETE FILE =z
ENDIF
JOIN TO z FOR person=s.person
FIELDS person,father,mother
SELECT secondary
USE
SELECT primary
USE =z
IF # 0
STORE t TO related
ENDIF
USE
RETURN

Module PRINTANS
PRINTANS 1looks at

variable called RELATED.
't' (for true), PRINTANS prints a message
that there 1is a relation between X and Y.
Otherwise, it says there was no relation
found on the database. This is aother module
that can have simple or complex versions.
This version is simple.

the wvalue of the
If the variable is

e T e T

* PRINTANS. CMD
b R T T T T T T T T T
ERASE

?

?

STORE "Is ("+STR(x,4)+") "+xname

TO textil

? texti

STORE "related to ("+STR(y,4)+") "+yname+"?"
TO text2

g =T o
IF related
STORE " YES™"
TO text3
ELSE
STORE " NO™"
TO text3
ENDIF
? text3
ERASE
RETURN
That does it for the simplest query, "“ls
X related to Y?" Now let's look at how to
implement the more difficult queries,
Who Are the Common Ancestors of X and Y?
This query is now easy to implement. The

only module that must change is PRINTANS, If

there 1is a relation, DRINTANS must do more
than priht "YES".
For each person in Set Z, the common

ancestors of X and Y, PRINTANS must FIND that
person's record in our FAMILY database, Then
PRINTANS must print the ancestor's name,
which is in the FAMILY database record.,
That's all there is to the change.

What Is the Relationship of X to Y?

This one is not so easy. But, thanks to
the modular nature of our program, it is easy
to see what must be changed. Let's recall
what our procedure was:

T Create 2 gets: one with
Johnston in it and one with Solomon
Butson in it. To each reecord add a
field for counting the generation
number, For Martha and Solomon, give
this field a value of 0 (zero).

Martha

P Find the records of the parents of
each person, and add them to that
person's set. 1In each record added,
include the field for the generation
number. Set the value to 1 more than
the value of the field for the
child.

& Check to
Johnston's
Solomon Butson's ancestral
S0, compute and print
relationship and quit.

see if anyone in Martha
ancestral set is also in
set. 1 B ¢
their

4, Repeat steps 2 and 3 until there are
no more parents to be found. If that
happens, then they have no known
blood relationship.

What modules do not need changing?
MAKEINDX and GETXY do not have anything to do
with telling us what the relation is. Nor do
they have anything to do with finding out
what the relation is. So they can be used as
they are.

PRINTANS, on the other hand, must
obviously change. It has to tell us the name
of the relationship and not just that there
is one or who the common ancestors are. So,
it will need to be a lot smarter. Recall the
relationship table from our theoretical
discussion in part I. PRINTANS must be able
to use that table.

PRINTANS must
generations X is from the
common ancestor and how many generations Y is
from the common ancestor. The most efficient
way to keep track of that is to add a field,
call it GENX for X and GENY for Y, ‘to the
Ancestiral Sets. So, we must change our model
databases. Call the new ones RELATE3X and
RELATE3Y. And we must change any modules that
use the Ancestral Sets.

In order to use the table,
know how many

MAKESETS,
changed to

GENERATE, and CHECKIT must be
include references to the new
geéneration count fields., MAKESETS must set
the initial value of GENX and GENY to =zero.
GENERATE must store the new values of GENX
and GENY. This will be 1 for the parents, 2
for the grandparents, etc. _And CHECKIT must
include the two new fields in the FIELDS part -
of the JOIN command.

Here's how these three modules look after
the changes. We'll consider PRINTANS in more
detail below.

*****#tt**x***t***##***tt***#t*ﬁxr;%*;##*t#xx
* MAKESET3.CMD
¥X#¥t***tt**t¥x*$**x*t**ttt*t**#**x#t**kv
STORE 0000 TO gens

STORE 0000 TO xprevend
STORE 0001 TO xgenend
STORE 0000 TO yprevend
STORE 0001 TO ygenend

STORE f TO related

e T T
USE family INDEX xperson
STORE STR(x,4) TO srcharg
FIND &srcharg

SELECT SECONDARY

USE relate3x

COPY STRUCTURE TO x

USE x

APPEND BLANK

44

JUL 84 - GENEALOGICAL COMPUTING — 13

REPLACE person WITH p.person
REPLACE father WITH p.father
REPLACE mother WITH p.mother
REPLACE genx WITH O

USE

SELECT PRIMARY

Ed

STORE STR(y,4) TO srcharg
FIND &srcharg

SELECT SECONDARY
USE relateldy

COPY STRUCTURE TO y
USE y g
APPEND BLANK
REPLACE person WITH
REPLACE father WITH
REPLACE mother WITH
REPLACE geny WITH 0O
USE

SELECT PRINARY

L2 RS2 RSS2 222 22 £ 2 2 2 & 2
RELEASE recnum, srcharg
RETURN

P.pPeErson
p.father
p.mother

L e s AR R R R s e

* GEN3,CM¥D
LR RS R e s L R PR R R S

STORE "gen"+"ksetname" TO gennum

STORE "&setname™ + "genend" TO genfld
STORE "&setname" + "prevend"” TO prevfld
STORE &prevfld TO start
STORE &genfld TO finish
STORE &genfld TO &prevfld

USE &setname
SELECT secondary =
USE family INDEX xperson
SELECT primary
DO WHILE start finish
STORE start + 1 TO start
EEEFEEETR AR
GOTO start
IF father 0
STORE STR(father,4) TO srcharg
SELECT secondary
FIND &srcharg
IF = 0
SELECT primary
APPEND BLANK
REPLACE person
REPLACE father WITH s.father
REPLACE mother WITH s.mother
REPLACE &gennum WITH gens

WITH s.person

STORE &genfld + 1 TO &kgenfld
ELSE
SELECT primary
ENDIF
ENDIF
Rk kRN K NN
GOTO start

IF mother 0

STORE STR(mother,4) TO srcharg

SELECT secondary

FIND &srcharg

IF # 0
SELECT primary
APPEND BLANK
REPLACE person WITH s.person
REPLACE father VWITH s.father
REPLACE mother WITH s.mother
REPLACE &%gennum WITH gens

STORE &genfld + 1 TO &genfld
ELSE
SELECT primary
ENDIF
ENDIF

=NDDO

JUL 8% — GENFALOGICAL COMPUTING - 16

SELECT secondary
USE

SELECT primary
USE

RELEASE start,
RELEASE genfld,
RETURN

finish,
previld

recnum, srcharg,gennum

R R i N LI T I T I I
- CHECKIT3.CMD
¥¥**iii*lt*11¥¥!¥***#l¥1'****¥*#*ttx**izixxx;
USE x
SELECT secondary
USE ¥y
SELECT primary
IF FILE(z)

DELETE FILE =z
ENDIF
JOIN TO z FOR person=s.person
FIELDS person, father,mother,genx,s.geny
SELECT secondary

USE
SELECT primary
USE =z
IF # 0
STORE t TO related
ENDIF
USE
RETURN
PRINTANS will wuse a special module to
figure out what the relationship is. It is
that module, c¢alled RELATION that is of
interest. The only real change to PRINTANS is

to add a line that says
DO relation

at the appropriate place.

So 1let's look at RELATION. It is going
to be the biggest module we will have to deal
with. It will look at GENX and GENY for the
common ancestor we are working with. Using
those two fields, it will print the
relationship. To refresh our menories, let's
look again at the relationship table,

X is the ... of T
X
3 0 1 2 3
Grand ist Great
0 Selr Child Child Grand
Child
Full/Half Niece/ Grand
1 Parent Sibling Nephew Niece/
Nephew
Grand Aunt/ 1st 1st Cous,
2 Parent Uncle Cousin 1 Time
Removed
1st Great Grand 1st Cous, 2nd
3 Grand Aunt/Uncl 1 Time Cousin
Parent Removed

RELATION works a CASE at a time.
the first CASE whose requirements it
and skips the rest. There are five
altogether.

It does
meets
CASEs

is a
group

First of all, if GENX = 9, then X
direct ancestor of Y. So the first CASE
is for either GENX = 0 or GENY = 0.

The next CASE is when GENX and GENY
both 1. Look at the table.
are full or half siblings.

are
This means they

The next CASE is that one of them is 1,
hut not the other one. This is the Aunt /
Uncle or Niece / Nephew situation. We need to
figure out how many "Great"'s to put in
front of it.

In the CASE where GENX and GENY are equal
and greater than 1, we are on the table's
diagonal. That means X and Y are "un-removed"
cousins: 1st Cousins, 2nd Cousins, etc. All
we have to do is calculate the cousin number,
which is one less than the generation number.

Finally, there is the CASE where GENX and
GENY are not equal but are both greater than
1. This is a computation to figure out how
many times removed the cousins are, which is
the absolute difference between GENX and
GENY.

So, we have broken the problem into five
subproblems. And now we have only
mathematical computations, such as how many

"Great"'s, how many times removed, or what
number of cousin to calculate from GENX and
GENY. We're ready to see how it 1looks in
dBASEII.

AR R LR s R P R R s s R R R L R R RS R R R R
* RELATION.CMD

* "WWhat i1s the relationship of X to Y?"
EREERE Rk R Rk Rk ek kR ek k Rk Rk prkeyxek
DO CASE

R ERE R R R R R R E R kR
CASE genx = 0 .OR. geny = 0
IF geny = 0

STORE "Child " TO relation

STORE genx-2 TO greats
ELSE

STORE "Parent'" TO relation

STORE geny-2 TO greats
ENDIF

IF greats 0
STORE ™ " TO grand

ELSE
IF greats = 0
STORE "Grand " TO grand
ELSE

IF greats = 1 -
STORE '"Great Grand " TO grand
ELSE
IF greats 1
STORE STR(greats,2)+" Great Grand " TO grand
ENDIF
ENDIF
ENDIF
ENDIF
? "is the'",grand,relation
EEREEER KRR E R AR EE R R
CASE genx = 1 _AND. geny = 1

? "is the Full or Half Sibling"
e e

CASE genx = 1 .OR. geny = 1
IF geny = 1
STORE "Niece/nephew” TO relation
STORE genx-3 TO greats
ELSE
STORE "Aunt/Uncle " TO relation
STORE geny-3 TO greats
ENDIF
IF greats 0
STORE " " TO grand
ELSE
IF greats = 0
STORE "Grand " TO grand
ELSE

IF greats = 1
STORE "Great Grand " TO grand
ELSE

[F greats 1

STORE STR(greats,2)+" Great Grand " TO grand
ENDIF
ENDIF
ENDIF

ENDIF

? "is the",grand,relation
T P R R R
CASE genx = geny

STORE genx = 1 TO cousin

? "is the",STR(cousin,2),"Cousin"
2 R K ek o ek KR e e

CASE genx 1 .AND. geny 1
IF genx geny
STORE geny - 1 TO cousin
STORE genx - geny TO removed
ELSE
STORE genx - 1 TO cousin
STORE geny - gzenx TO removed
ENDILF

? "is the",3TR(cousin,2),"Cousin",
STR(removed,3),"times removed"

OTHERWISE
? "Program Bug in Relation.CMD--No Case"
SET ECHO on
SET STEP on

de s e o ok ok ek ok ok ol ol O R R R R R

ENDCASE

RELEASE grand,greats,relation,cousin,removed

RETURN

It isn't so bad 1if you 1look at the
logical CASEs. The only new (to our
discussion) feature of dBASEII it uses is the
STR function. STR converts numbers to
character strings. We use i1t to save space on
our printed answers. For example,
STR(cousin,2) prints the number in the

variable cousin as a 2-digit number.

Who Are the People Relating X to Y?

o — N -

This one is the hardest of them all. In
each record added to the Ancestral Sets, we
must not only keep track of how many

generations this ancestor is from X or Y. We

must actually keep the complete chain of
people linking X or ¥ to this ancestor. That
means a change to our model databases to add

a new field called CHAIN. So, we must change
MAKESETS, GENERATE, and CHECKIT, since these
all look at the fields of the Ancestral Sets.

And obviously, we must change PRINTANS to
print the result.

But there is really only one module that
needs any significant change. After all, the

only change to PRINTANS is to FIND the names
of the common ancestors, using the CHAIN of
person codes. And MAKESETS and CHECKIT only
need minor changes to deal with the new CHAIN
fields.

The real work is in GENERATE.
the links to the chalin.
out not to be so bad.
the module:

It must add
But even this turns
We add the following to

STORE STR(person,4)+&chain TO genchain

This 1lengthens the CHAIN by putting the
newest link on the froat.

For example, suppose the chalin for some
person looks like this in Ancestral Set X:

2017013802220936 & %
This means the person is 2017, who 1is the
parent of 0133, who is the parent of 0222,
who is the parent of 0936, who is X. When we
JUL 84 - GENEALOGICAL COMPUTING - 17

add 2017's father 2209, his chain looks like

this:
22092017013802220936

Just to make sure you see the full effect
on GENERATE, here is how the revised GENERATE
will look:

AR AR AR AR E R R RN A N A AR R KRR R KRR R R R AR R R AR

* GEN4.CMD

EAFEE A AT AN AT A AT AT AN AN AT I A A AN AP F A AT TR R AN AR

STORE "chain"+"&setname" TO chain
STORE "gen"+"ksetname" TO gennum
3STORE "Lsetname" + "genend"” TO genfld
STORE "&setname" + "prevend" TO prevfld
STORE &prevfld TO start
STORE &genfld TO finish
STORE &genfld TO &prevfld

USE %setname
SELECT secondary
USE family INDEX xperson
SELECT primary
DO WHILE start finish
STORE start + 1 TO start
¥k Rk EkRx -
GOTO start
STORE STR(person,4)+&chain TO genchain
IF father 1]
STORE STR(father,4) TO srcharg
SELECT secondary
FIND &srcharg
IF # 0
SELECT primary
APPEND BLANK -
REPLACE person
REPLACE father WITH s.father
REPLACE mother WITH s.mother
REPLACE &gennum WITH gens

WITH s.person

REPLACE &chain WITH genchalin
STORE &genfld + 1 TO &genfld
ELSE
SELECT primary
ENDIF
ENDIF
EEFETERIXTEREER
GOTO start

IF mother 0
STORE STR(mother,4) TO srcharg
SELECT secondary
FIND &srcharg
IF # 0
SELECT primary
APPEND BLANK _
REPLACE person WITH s.person
REPLACE father WITH s.father
REPLACE mother WITH s.mother
REPLACE &Lgennum WITH gens
REPLACE &chain WITH genchain
STORE &genfld + 1 TO &genfld
ELSE
SELECT primary
ENDIF
ENDIF
ENDDO
SELECT secondary
USE
.SELECT primary
USE
RELEASE genfld, prevfld, start, finish
RELEASE recnum, srcharg,gennum,genchain,chain
RETURN

Other Relationships Beyond the Closest

Recall that to find relationships beyond

the closest, we remove the common ancestors
from the Ancestral Sets and resume the
search. This requires no changes to the six

main sub-modules. =

JUL 84 - GENEALOGICAL COMPUTING - 18

Rather it means a change to the main
module, RELATE, that DOes the sub-nodules. We
must put GENERATE and CHECKIT's DO/ENDDO loop
into another bigger DO/ENDDO loop, along with
PRINTANS and a new module, The big loop will
be left only when there are no more ancestors
for both X and Y or when the inquirer
indicates he or she 1is ready to stop
searching for more distant relationships.

The new module, we'll call it REMOVAL,
takes those people who are in Set Z, the set
of common ancestors, out of sets X and Y. The
only exception is that X and Y must remain in
their respective Ancestral Sets. Since
REMOVAL and the changes to RELATE are fairly
straightforward, their details are left to
the reader.

CONCLUSION

Finding relationships is not a simple
matter. But it 1is a process which can be
efficiently run by a computer t0 save us
time. Even if vou do not want to program a
relationship search, you should better
understand what 1is involved in such a
function.

We have explored the theory of finding

blood relaticnships in a family database. %We

have put that theory into practice. We have
seen to it that the implementation was
efficient, as well as correct. We have
implemented it in a modular manner, so that
it can be most easily understood and
modified.

There are issues remaining however. The

most significant is the (apparently) far more
complex problem of non-blood relationships. A

little work with pencil and paper will show
how quickly this problenm explodes into a
large one. But now we have a good base from
which to deal with the remaining issues.

g 3

FAMILY TREE

A software package to help you use the
Commodore 64 or VIC 20 (32K) as a
dynamic system to control data on your
family tree.

FEATURES

— Unlimited Geneclogies

— Fully indexed

— Easy editing and updating
— Search functions

— Family Record sheets

—4, 5, 6 Generation pedigrees
— Qutput to screen or printer
— Complete maenual

$49.95 CND —$38.95 US
(Ontario and Michigan residents add sales tax)

GENEALOGY SOFTWARE

phone 519-344.3990

P.O. Box 1151 1046 Parrwood Ave.
Port Huron, MI Sarmig, Ont.
48061 N7V 3Ts

